Paper ID: 2305.11322

SpikeCP: Delay-Adaptive Reliable Spiking Neural Networks via Conformal Prediction

Jiechen Chen, Sangwoo Park, Osvaldo Simeone

Spiking neural networks (SNNs) process time-series data via internal event-driven neural dynamics whose energy consumption depends on the number of spikes exchanged between neurons over the course of the input presentation. In typical implementations of an SNN classifier, decisions are produced after the entire input sequence has been processed, resulting in latency and energy consumption levels that are fairly uniform across inputs. Recently introduced delay-adaptive SNNs tailor the inference latency -- and, with it, the energy consumption -- to the difficulty of each example, by producing an early decision when the SNN model is sufficiently ``confident''. In this paper, we start by observing that, as an SNN processes input samples, its classification decisions tend to be first under-confident and then over-confident with respect to the decision's ground-truth, unknown, test accuracy. This makes it difficult to determine a stopping time that ensures a desired level of accuracy. To address this problem, we introduce a novel delay-adaptive SNN-based inference methodology that, wrapping around any pre-trained SNN classifier, provides guaranteed reliability for the decisions produced at input-dependent stopping times. The approach entails minimal added complexity as compared to the underlying SNN, requiring only thresholding and counting operations at run time, and it leverages tools from conformal prediction (CP).

Submitted: May 18, 2023