Paper ID: 2305.12090
UP5: Unbiased Foundation Model for Fairness-aware Recommendation
Wenyue Hua, Yingqiang Ge, Shuyuan Xu, Jianchao Ji, Yongfeng Zhang
Recent advances in Foundation Models such as Large Language Models (LLMs) have propelled them to the forefront of Recommender Systems (RS). Despite their utility, there is a growing concern that LLMs might inadvertently perpetuate societal stereotypes, resulting in unfair recommendations. Since fairness is critical for RS as many users take it for decision-making and demand fulfillment, this paper focuses on user-side fairness for LLM-based recommendation where the users may require a recommender system to be fair on specific sensitive features such as gender or age. In this paper, we dive into the extent of unfairness exhibited by LLM-based recommender models based on both T5 and LLaMA backbones, and discuss appropriate methods for promoting equitable treatment of users in LLM-based recommendation models. We introduce a novel Counterfactually-Fair-Prompt (CFP) method towards Unbiased Foundation mOdels (UFO) for fairness-aware LLM-based recommendation. Experiments are conducted on two real-world datasets, MovieLens-1M and Insurance, and compared with both matching-based and sequential-based fairness-aware recommendation models. Results show that CFP achieves better recommendation performance with a high level of fairness. Data and code are open-sourced at https://github.com/agiresearch/UP5.
Submitted: May 20, 2023