Paper ID: 2305.12473
Continually Improving Extractive QA via Human Feedback
Ge Gao, Hung-Ting Chen, Yoav Artzi, Eunsol Choi
We study continually improving an extractive question answering (QA) system via human user feedback. We design and deploy an iterative approach, where information-seeking users ask questions, receive model-predicted answers, and provide feedback. We conduct experiments involving thousands of user interactions under diverse setups to broaden the understanding of learning from feedback over time. Our experiments show effective improvement from user feedback of extractive QA models over time across different data regimes, including significant potential for domain adaptation.
Submitted: May 21, 2023