Paper ID: 2305.14062

Amplitude-Independent Machine Learning for PPG through Visibility Graphs and Transfer Learning

Yuyang Miao, Harry J. Davies, Danilo P. Mandic

Photoplethysmography (PPG) refers to the measurement of variations in blood volume using light and is a feature of most wearable devices. The PPG signals provide insight into the body's circulatory system and can be employed to extract various bio-features, such as heart rate and vascular ageing. Although several algorithms have been proposed for this purpose, many exhibit limitations, including heavy reliance on human calibration, high signal quality requirements, and a lack of generalisation. In this paper, we introduce a PPG signal processing framework that integrates graph theory and computer vision algorithms, to provide an analysis framework which is amplitude-independent and invariant to affine transformations. It also requires minimal preprocessing, fuses information through RGB channels and exhibits robust generalisation across tasks and datasets. The proposed VGTL-net achieves state-of-the-art performance in the prediction of vascular ageing and demonstrates robust estimation of continuous blood pressure waveforms.

Submitted: May 23, 2023