Paper ID: 2305.14616

Exploring Affordance and Situated Meaning in Image Captions: A Multimodal Analysis

Pin-Er Chen, Po-Ya Angela Wang, Hsin-Yu Chou, Yu-Hsiang Tseng, Shu-Kai Hsieh

This paper explores the grounding issue regarding multimodal semantic representation from a computational cognitive-linguistic view. We annotate images from the Flickr30k dataset with five perceptual properties: Affordance, Perceptual Salience, Object Number, Gaze Cueing, and Ecological Niche Association (ENA), and examine their association with textual elements in the image captions. Our findings reveal that images with Gibsonian affordance show a higher frequency of captions containing 'holding-verbs' and 'container-nouns' compared to images displaying telic affordance. Perceptual Salience, Object Number, and ENA are also associated with the choice of linguistic expressions. Our study demonstrates that comprehensive understanding of objects or events requires cognitive attention, semantic nuances in language, and integration across multiple modalities. We highlight the vital importance of situated meaning and affordance grounding in natural language understanding, with the potential to advance human-like interpretation in various scenarios.

Submitted: May 24, 2023