Paper ID: 2305.14675
TriMLP: Revenge of a MLP-like Architecture in Sequential Recommendation
Yiheng Jiang, Yuanbo Xu, Yongjian Yang, Funing Yang, Pengyang Wang, Hui Xiong
In this paper, we present a MLP-like architecture for sequential recommendation, namely TriMLP, with a novel Triangular Mixer for cross-token communications. In designing Triangular Mixer, we simplify the cross-token operation in MLP as the basic matrix multiplication, and drop the lower-triangle neurons of the weight matrix to block the anti-chronological order connections from future tokens. Accordingly, the information leakage issue can be remedied and the prediction capability of MLP can be fully excavated under the standard auto-regressive mode. Take a step further, the mixer serially alternates two delicate MLPs with triangular shape, tagged as global and local mixing, to separately capture the long range dependencies and local patterns on fine-grained level, i.e., long and short-term preferences. Empirical study on 12 datasets of different scales (50K\textasciitilde 10M user-item interactions) from 4 benchmarks (Amazon, MovieLens, Tenrec and LBSN) show that TriMLP consistently attains promising accuracy/efficiency trade-off, where the average performance boost against several state-of-the-art baselines achieves up to 14.88% with 8.65% less inference cost.
Submitted: May 24, 2023