Paper ID: 2305.15267

Training Energy-Based Normalizing Flow with Score-Matching Objectives

Chen-Hao Chao, Wei-Fang Sun, Yen-Chang Hsu, Zsolt Kira, Chun-Yi Lee

In this paper, we establish a connection between the parameterization of flow-based and energy-based generative models, and present a new flow-based modeling approach called energy-based normalizing flow (EBFlow). We demonstrate that by optimizing EBFlow with score-matching objectives, the computation of Jacobian determinants for linear transformations can be entirely bypassed. This feature enables the use of arbitrary linear layers in the construction of flow-based models without increasing the computational time complexity of each training iteration from $O(D^2L)$ to $O(D^3L)$ for an $L$-layered model that accepts $D$-dimensional inputs. This makes the training of EBFlow more efficient than the commonly-adopted maximum likelihood training method. In addition to the reduction in runtime, we enhance the training stability and empirical performance of EBFlow through a number of techniques developed based on our analysis of the score-matching methods. The experimental results demonstrate that our approach achieves a significant speedup compared to maximum likelihood estimation while outperforming prior methods with a noticeable margin in terms of negative log-likelihood (NLL).

Submitted: May 24, 2023