Paper ID: 2305.16124
Robust Category-Level 3D Pose Estimation from Synthetic Data
Jiahao Yang, Wufei Ma, Angtian Wang, Xiaoding Yuan, Alan Yuille, Adam Kortylewski
Obtaining accurate 3D object poses is vital for numerous computer vision applications, such as 3D reconstruction and scene understanding. However, annotating real-world objects is time-consuming and challenging. While synthetically generated training data is a viable alternative, the domain shift between real and synthetic data is a significant challenge. In this work, we aim to narrow the performance gap between models trained on synthetic data and few real images and fully supervised models trained on large-scale data. We achieve this by approaching the problem from two perspectives: 1) We introduce SyntheticP3D, a new synthetic dataset for object pose estimation generated from CAD models and enhanced with a novel algorithm. 2) We propose a novel approach (CC3D) for training neural mesh models that perform pose estimation via inverse rendering. In particular, we exploit the spatial relationships between features on the mesh surface and a contrastive learning scheme to guide the domain adaptation process. Combined, these two approaches enable our models to perform competitively with state-of-the-art models using only 10% of the respective real training images, while outperforming the SOTA model by 10.4% with a threshold of pi/18 using only 50% of the real training data. Our trained model further demonstrates robust generalization to out-of-distribution scenarios despite being trained with minimal real data.
Submitted: May 25, 2023