Paper ID: 2305.17332

Learning Capacity: A Measure of the Effective Dimensionality of a Model

Daiwei Chen, Wei-Kai Chang, Pratik Chaudhari

We use a formal correspondence between thermodynamics and inference, where the number of samples can be thought of as the inverse temperature, to study a quantity called ``learning capacity'' which is a measure of the effective dimensionality of a model. We show that the learning capacity is a useful notion of the complexity because (a) it correlates well with the test loss and it is a tiny fraction of the number of parameters for many deep networks trained on typical datasets, (b) it depends upon the number of samples used for training, (c) it is numerically consistent with notions of capacity obtained from PAC-Bayes generalization bounds, and (d) the test loss as a function of the learning capacity does not exhibit double descent. We show that the learning capacity saturates at very small and very large sample sizes; the threshold that characterizes the transition between these two regimes provides guidelines as to when one should procure more data and when one should search for a different architecture to improve performance. We show how the learning capacity can be used to provide a quantitative notion of capacity even for non-parametric models such as random forests and nearest neighbor classifiers.

Submitted: May 27, 2023