Paper ID: 2305.18144

GripRank: Bridging the Gap between Retrieval and Generation via the Generative Knowledge Improved Passage Ranking

Jiaqi Bai, Hongcheng Guo, Jiaheng Liu, Jian Yang, Xinnian Liang, Zhao Yan, Zhoujun Li

Retrieval-enhanced text generation has shown remarkable progress on knowledge-intensive language tasks, such as open-domain question answering and knowledge-enhanced dialogue generation, by leveraging passages retrieved from a large passage corpus for delivering a proper answer given the input query. However, the retrieved passages are not ideal for guiding answer generation because of the discrepancy between retrieval and generation, i.e., the candidate passages are all treated equally during the retrieval procedure without considering their potential to generate a proper answer. This discrepancy makes a passage retriever deliver a sub-optimal collection of candidate passages to generate the answer. In this paper, we propose the GeneRative Knowledge Improved Passage Ranking (GripRank) approach, addressing the above challenge by distilling knowledge from a generative passage estimator (GPE) to a passage ranker, where the GPE is a generative language model used to measure how likely the candidate passages can generate the proper answer. We realize the distillation procedure by teaching the passage ranker learning to rank the passages ordered by the GPE. Furthermore, we improve the distillation quality by devising a curriculum knowledge distillation mechanism, which allows the knowledge provided by the GPE can be progressively distilled to the ranker through an easy-to-hard curriculum, enabling the passage ranker to correctly recognize the provenance of the answer from many plausible candidates. We conduct extensive experiments on four datasets across three knowledge-intensive language tasks. Experimental results show advantages over the state-of-the-art methods for both passage ranking and answer generation on the KILT benchmark.

Submitted: May 29, 2023