Paper ID: 2305.18206

Deep Generative Model for Simultaneous Range Error Mitigation and Environment Identification

Yuxiao Li, Santiago Mazuelas, Yuan Shen

Received waveforms contain rich information for both range information and environment semantics. However, its full potential is hard to exploit under multipath and non-line-of-sight conditions. This paper proposes a deep generative model (DGM) for simultaneous range error mitigation and environment identification. In particular, we present a Bayesian model for the generative process of the received waveform composed by latent variables for both range-related features and environment semantics. The simultaneous range error mitigation and environment identification is interpreted as an inference problem based on the DGM, and implemented in a unique end-to-end learning scheme. Comprehensive experiments on a general Ultra-wideband dataset demonstrate the superior performance on range error mitigation, scalability to different environments, and novel capability on simultaneous environment identification.

Submitted: May 23, 2023