Paper ID: 2305.18269
Doing the right thing for the right reason: Evaluating artificial moral cognition by probing cost insensitivity
Yiran Mao, Madeline G. Reinecke, Markus Kunesch, Edgar A. Duéñez-Guzmán, Ramona Comanescu, Julia Haas, Joel Z. Leibo
Is it possible to evaluate the moral cognition of complex artificial agents? In this work, we take a look at one aspect of morality: `doing the right thing for the right reasons.' We propose a behavior-based analysis of artificial moral cognition which could also be applied to humans to facilitate like-for-like comparison. Morally-motivated behavior should persist despite mounting cost; by measuring an agent's sensitivity to this cost, we gain deeper insight into underlying motivations. We apply this evaluation to a particular set of deep reinforcement learning agents, trained by memory-based meta-reinforcement learning. Our results indicate that agents trained with a reward function that includes other-regarding preferences perform helping behavior in a way that is less sensitive to increasing cost than agents trained with more self-interested preferences.
Submitted: May 29, 2023