Paper ID: 2306.00016
Incorporating Domain Knowledge in Deep Neural Networks for Discrete Choice Models
Shadi Haj-Yahia, Omar Mansour, Tomer Toledo
Discrete choice models (DCM) are widely employed in travel demand analysis as a powerful theoretical econometric framework for understanding and predicting choice behaviors. DCMs are formed as random utility models (RUM), with their key advantage of interpretability. However, a core requirement for the estimation of these models is a priori specification of the associated utility functions, making them sensitive to modelers' subjective beliefs. Recently, machine learning (ML) approaches have emerged as a promising avenue for learning unobserved non-linear relationships in DCMs. However, ML models are considered "black box" and may not correspond with expected relationships. This paper proposes a framework that expands the potential of data-driven approaches for DCM by supporting the development of interpretable models that incorporate domain knowledge and prior beliefs through constraints. The proposed framework includes pseudo data samples that represent required relationships and a loss function that measures their fulfillment, along with observed data, for model training. The developed framework aims to improve model interpretability by combining ML's specification flexibility with econometrics and interpretable behavioral analysis. A case study demonstrates the potential of this framework for discrete choice analysis.
Submitted: May 30, 2023