Paper ID: 2306.01726
Streaming algorithms for evaluating noisy judges on unlabeled data -- binary classification
Andrés Corrada-Emmanuel
The evaluation of noisy binary classifiers on unlabeled data is treated as a streaming task: given a data sketch of the decisions by an ensemble, estimate the true prevalence of the labels as well as each classifier's accuracy on them. Two fully algebraic evaluators are constructed to do this. Both are based on the assumption that the classifiers make independent errors. The first is based on majority voting. The second, the main contribution of the paper, is guaranteed to be correct. But how do we know the classifiers are independent on any given test? This principal/agent monitoring paradox is ameliorated by exploiting the failures of the independent evaluator to return sensible estimates. A search for nearly error independent trios is empirically carried out on the \texttt{adult}, \texttt{mushroom}, and \texttt{two-norm} datasets by using the algebraic failure modes to reject evaluation ensembles as too correlated. The searches are refined by constructing a surface in evaluation space that contains the true value point. The algebra of arbitrarily correlated classifiers permits the selection of a polynomial subset free of any correlation variables. Candidate evaluation ensembles are rejected if their data sketches produce independent estimates too far from the constructed surface. The results produced by the surviving ensembles can sometimes be as good as 1\%. But handling even small amounts of correlation remains a challenge. A Taylor expansion of the estimates produced when independence is assumed but the classifiers are, in fact, slightly correlated helps clarify how the independent evaluator has algebraic `blind spots'.
Submitted: Jun 2, 2023