Paper ID: 2306.01944
EdGCon: Auto-assigner of Iconicity Ratings Grounded by Lexical Properties to Aid in Generation of Technical Gestures
Sameena Hossain, Payal Kamboj, Aranyak Maity, Tamiko Azuma, Ayan Banerjee, Sandeep K. S. Gupta
Gestures that share similarities in their forms and are related in their meanings, should be easier for learners to recognize and incorporate into their existing lexicon. In that regard, to be more readily accepted as standard by the Deaf and Hard of Hearing community, technical gestures in American Sign Language (ASL) will optimally share similar in forms with their lexical neighbors. We utilize a lexical database of ASL, ASL-LEX, to identify lexical relations within a set of technical gestures. We use automated identification for 3 unique sub-lexical properties in ASL- location, handshape and movement. EdGCon assigned an iconicity rating based on the lexical property similarities of the new gesture with an existing set of technical gestures and the relatedness of the meaning of the new technical word to that of the existing set of technical words. We collected 30 ad hoc crowdsourced technical gestures from different internet websites and tested them against 31 gestures from the DeafTEC technical corpus. We found that EdGCon was able to correctly auto-assign the iconicity ratings 80.76% of the time.
Submitted: Jun 2, 2023