Paper ID: 2306.02142
TransDocAnalyser: A Framework for Offline Semi-structured Handwritten Document Analysis in the Legal Domain
Sagar Chakraborty, Gaurav Harit, Saptarshi Ghosh
State-of-the-art offline Optical Character Recognition (OCR) frameworks perform poorly on semi-structured handwritten domain-specific documents due to their inability to localize and label form fields with domain-specific semantics. Existing techniques for semi-structured document analysis have primarily used datasets comprising invoices, purchase orders, receipts, and identity-card documents for benchmarking. In this work, we build the first semi-structured document analysis dataset in the legal domain by collecting a large number of First Information Report (FIR) documents from several police stations in India. This dataset, which we call the FIR dataset, is more challenging than most existing document analysis datasets, since it combines a wide variety of handwritten text with printed text. We also propose an end-to-end framework for offline processing of handwritten semi-structured documents, and benchmark it on our novel FIR dataset. Our framework used Encoder-Decoder architecture for localizing and labelling the form fields and for recognizing the handwritten content. The encoder consists of Faster-RCNN and Vision Transformers. Further the Transformer-based decoder architecture is trained with a domain-specific tokenizer. We also propose a post-correction method to handle recognition errors pertaining to the domain-specific terms. Our proposed framework achieves state-of-the-art results on the FIR dataset outperforming several existing models
Submitted: Jun 3, 2023