Paper ID: 2306.02709

Comparative Study on Semi-supervised Learning Applied for Anomaly Detection in Hydraulic Condition Monitoring System

Yongqi Dong, Kejia Chen, Zhiyuan Ma

Condition-based maintenance is becoming increasingly important in hydraulic systems. However, anomaly detection for these systems remains challenging, especially since that anomalous data is scarce and labeling such data is tedious and even dangerous. Therefore, it is advisable to make use of unsupervised or semi-supervised methods, especially for semi-supervised learning which utilizes unsupervised learning as a feature extraction mechanism to aid the supervised part when only a small number of labels are available. This study systematically compares semi-supervised learning methods applied for anomaly detection in hydraulic condition monitoring systems. Firstly, thorough data analysis and feature learning were carried out to understand the open-sourced hydraulic condition monitoring dataset. Then, various methods were implemented and evaluated including traditional stand-alone semi-supervised learning models (e.g., one-class SVM, Robust Covariance), ensemble models (e.g., Isolation Forest), and deep neural network based models (e.g., autoencoder, Hierarchical Extreme Learning Machine (HELM)). Typically, this study customized and implemented an extreme learning machine based semi-supervised HELM model and verified its superiority over other semi-supervised methods. Extensive experiments show that the customized HELM model obtained state-of-the-art performance with the highest accuracy (99.5%), the lowest false positive rate (0.015), and the best F1-score (0.985) beating other semi-supervised methods.

Submitted: Jun 5, 2023