Paper ID: 2306.02979
The Chai Platform's AI Safety Framework
Xiaoding Lu, Aleksey Korshuk, Zongyi Liu, William Beauchamp
Chai empowers users to create and interact with customized chatbots, offering unique and engaging experiences. Despite the exciting prospects, the work recognizes the inherent challenges of a commitment to modern safety standards. Therefore, this paper presents the integrated AI safety principles into Chai to prioritize user safety, data protection, and ethical technology use. The paper specifically explores the multidimensional domain of AI safety research, demonstrating its application in Chai's conversational chatbot platform. It presents Chai's AI safety principles, informed by well-established AI research centres and adapted for chat AI. This work proposes the following safety framework: Content Safeguarding; Stability and Robustness; and Operational Transparency and Traceability. The subsequent implementation of these principles is outlined, followed by an experimental analysis of Chai's AI safety framework's real-world impact. We emphasise the significance of conscientious application of AI safety principles and robust safety measures. The successful implementation of the safe AI framework in Chai indicates the practicality of mitigating potential risks for responsible and ethical use of AI technologies. The ultimate vision is a transformative AI tool fostering progress and innovation while prioritizing user safety and ethical standards.
Submitted: Jun 5, 2023