Paper ID: 2306.06663
LF-PGVIO: A Visual-Inertial-Odometry Framework for Large Field-of-View Cameras using Points and Geodesic Segments
Ze Wang, Kailun Yang, Hao Shi, Yufan Zhang, Zhijie Xu, Fei Gao, Kaiwei Wang
In this paper, we propose LF-PGVIO, a Visual-Inertial-Odometry (VIO) framework for large Field-of-View (FoV) cameras with a negative plane using points and geodesic segments. The purpose of our research is to unleash the potential of point-line odometry with large-FoV omnidirectional cameras, even for cameras with negative-plane FoV. To achieve this, we propose an Omnidirectional Curve Segment Detection (OCSD) method combined with a camera model which is applicable to images with large distortions, such as panoramic annular images, fisheye images, and various panoramic images. The geodesic segment is sliced into multiple straight-line segments based on the radian and descriptors are extracted and recombined. Descriptor matching establishes the constraint relationship between 3D line segments in multiple frames. In our VIO system, line feature residual is also extended to support large-FoV cameras. Extensive evaluations on public datasets demonstrate the superior accuracy and robustness of LF-PGVIO compared to state-of-the-art methods. The source code will be made publicly available at https://github.com/flysoaryun/LF-PGVIO.
Submitted: Jun 11, 2023