Paper ID: 2306.07974
Chainlet Orbits: Topological Address Embedding for the Bitcoin Blockchain
Poupak Azad, Baris Coskunuzer, Murat Kantarcioglu, Cuneyt Gurcan Akcora
The rise of cryptocurrencies like Bitcoin, which enable transactions with a degree of pseudonymity, has led to a surge in various illicit activities, including ransomware payments and transactions on darknet markets. These illegal activities often utilize Bitcoin as the preferred payment method. However, current tools for detecting illicit behavior either rely on a few heuristics and laborious data collection processes or employ computationally inefficient graph neural network (GNN) models that are challenging to interpret. To overcome the computational and interpretability limitations of existing techniques, we introduce an effective solution called Chainlet Orbits. This approach embeds Bitcoin addresses by leveraging their topological characteristics in transactions. By employing our innovative address embedding, we investigate e-crime in Bitcoin networks by focusing on distinctive substructures that arise from illicit behavior. The results of our node classification experiments demonstrate superior performance compared to state-of-the-art methods, including both topological and GNN-based approaches. Moreover, our approach enables the use of interpretable and explainable machine learning models in as little as 15 minutes for most days on the Bitcoin transaction network.
Submitted: May 18, 2023