Paper ID: 2306.08166
Reinforcement Learning-Driven Linker Design via Fast Attention-based Point Cloud Alignment
Rebecca M. Neeser, Mehmet Akdel, Daniel Kovtun, Luca Naef
Proteolysis-Targeting Chimeras (PROTACs) represent a novel class of small molecules which are designed to act as a bridge between an E3 ligase and a disease-relevant protein, thereby promoting its subsequent degradation. PROTACs are composed of two protein binding "active" domains, linked by a "linker" domain. The design of the linker domain is challenging due to geometric and chemical constraints given by its interactions, and the need to maximize drug-likeness. To tackle these challenges, we introduce ShapeLinker, a method for de novo design of linkers. It performs fragment-linking using reinforcement learning on an autoregressive SMILES generator. The method optimizes for a composite score combining relevant physicochemical properties and a novel, attention-based point cloud alignment score. This new method successfully generates linkers that satisfy both relevant 2D and 3D requirements, and achieves state-of-the-art results in producing novel linkers assuming a target linker conformation. This allows for more rational and efficient PROTAC design and optimization. Code and data are available at https://github.com/aivant/ShapeLinker.
Submitted: Jun 13, 2023