Paper ID: 2306.09165
DEYOv2: Rank Feature with Greedy Matching for End-to-End Object Detection
Haodong Ouyang
This paper presents a novel object detector called DEYOv2, an improved version of the first-generation DEYO (DETR with YOLO) model. DEYOv2, similar to its predecessor, DEYOv2 employs a progressive reasoning approach to accelerate model training and enhance performance. The study delves into the limitations of one-to-one matching in optimization and proposes solutions to effectively address the issue, such as Rank Feature and Greedy Matching. This approach enables the third stage of DEYOv2 to maximize information acquisition from the first and second stages without needing NMS, achieving end-to-end optimization. By combining dense queries, sparse queries, one-to-many matching, and one-to-one matching, DEYOv2 leverages the advantages of each method. It outperforms all existing query-based end-to-end detectors under the same settings. When using ResNet-50 as the backbone and multi-scale features on the COCO dataset, DEYOv2 achieves 51.1 AP and 51.8 AP in 12 and 24 epochs, respectively. Compared to the end-to-end model DINO, DEYOv2 provides significant performance gains of 2.1 AP and 1.4 AP in the two epoch settings. To the best of our knowledge, DEYOv2 is the first fully end-to-end object detector that combines the respective strengths of classical detectors and query-based detectors.
Submitted: Jun 15, 2023