Paper ID: 2306.09478

Understanding and Mitigating Extrapolation Failures in Physics-Informed Neural Networks

Lukas Fesser, Luca D'Amico-Wong, Richard Qiu

Physics-informed Neural Networks (PINNs) have recently gained popularity due to their effective approximation of partial differential equations (PDEs) using deep neural networks (DNNs). However, their out of domain behavior is not well understood, with previous work speculating that the presence of high frequency components in the solution function might be to blame for poor extrapolation performance. In this paper, we study the extrapolation behavior of PINNs on a representative set of PDEs of different types, including high-dimensional PDEs. We find that failure to extrapolate is not caused by high frequencies in the solution function, but rather by shifts in the support of the Fourier spectrum over time. We term these spectral shifts and quantify them by introducing a Weighted Wasserstein-Fourier distance (WWF). We show that the WWF can be used to predict PINN extrapolation performance, and that in the absence of significant spectral shifts, PINN predictions stay close to the true solution even in extrapolation. Finally, we propose a transfer learning-based strategy to mitigate the effects of larger spectral shifts, which decreases extrapolation errors by up to 82%.

Submitted: Jun 15, 2023