Paper ID: 2306.09906
Correlation Clustering of Bird Sounds
David Stein, Bjoern Andres
Bird sound classification is the task of relating any sound recording to those species of bird that can be heard in the recording. Here, we study bird sound clustering, the task of deciding for any pair of sound recordings whether the same species of bird can be heard in both. We address this problem by first learning, from a training set, probabilities of pairs of recordings being related in this way, and then inferring a maximally probable partition of a test set by correlation clustering. We address the following questions: How accurate is this clustering, compared to a classification of the test set? How do the clusters thus inferred relate to the clusters obtained by classification? How accurate is this clustering when applied to recordings of bird species not heard during training? How effective is this clustering in separating, from bird sounds, environmental noise not heard during training?
Submitted: Jun 16, 2023