Paper ID: 2306.09987
Transforming Observations of Ocean Temperature with a Deep Convolutional Residual Regressive Neural Network
Albert Larson, Ali Shafqat Akanda
Sea surface temperature (SST) is an essential climate variable that can be measured via ground truth, remote sensing, or hybrid model methodologies. Here, we celebrate SST surveillance progress via the application of a few relevant technological advances from the late 20th and early 21st century. We further develop our existing water cycle observation framework, Flux to Flow (F2F), to fuse AMSR-E and MODIS into a higher resolution product with the goal of capturing gradients and filling cloud gaps that are otherwise unavailable. Our neural network architecture is constrained to a deep convolutional residual regressive neural network. We utilize three snapshots of twelve monthly SST measurements in 2010 as measured by the passive microwave radiometer AMSR-E, the visible and infrared monitoring MODIS instrument, and the in situ Argo dataset ISAS. The performance of the platform and success of this approach is evaluated using the root mean squared error (RMSE) metric. We determine that the 1:1 configuration of input and output data and a large observation region is too challenging for the single compute node and dcrrnn structure as is. When constrained to a single 100 x 100 pixel region and a small training dataset, the algorithm improves from the baseline experiment covering a much larger geography. For next discrete steps, we envision the consideration of a large input range with a very small output range. Furthermore, we see the need to integrate land and sea variables before performing computer vision tasks like those within. Finally, we see parallelization as necessary to overcome the compute obstacles we encountered.
Submitted: Jun 16, 2023