Paper ID: 2306.12534

Memory-Query Tradeoffs for Randomized Convex Optimization

Xi Chen, Binghui Peng

We show that any randomized first-order algorithm which minimizes a $d$-dimensional, $1$-Lipschitz convex function over the unit ball must either use $\Omega(d^{2-\delta})$ bits of memory or make $\Omega(d^{1+\delta/6-o(1)})$ queries, for any constant $\delta\in (0,1)$ and when the precision $\epsilon$ is quasipolynomially small in $d$. Our result implies that cutting plane methods, which use $\tilde{O}(d^2)$ bits of memory and $\tilde{O}(d)$ queries, are Pareto-optimal among randomized first-order algorithms, and quadratic memory is required to achieve optimal query complexity for convex optimization.

Submitted: Jun 21, 2023