Paper ID: 2306.12857

Efficient Partitioning Method of Large-Scale Public Safety Spatio-Temporal Data based on Information Loss Constraints

Jie Gao, Yawen Li, Zhe Xue, Zeli Guan

The storage, management, and application of massive spatio-temporal data are widely applied in various practical scenarios, including public safety. However, due to the unique spatio-temporal distribution characteristics of re-al-world data, most existing methods have limitations in terms of the spatio-temporal proximity of data and load balancing in distributed storage. There-fore, this paper proposes an efficient partitioning method of large-scale public safety spatio-temporal data based on information loss constraints (IFL-LSTP). The IFL-LSTP model specifically targets large-scale spatio-temporal point da-ta by combining the spatio-temporal partitioning module (STPM) with the graph partitioning module (GPM). This approach can significantly reduce the scale of data while maintaining the model's accuracy, in order to improve the partitioning efficiency. It can also ensure the load balancing of distributed storage while maintaining spatio-temporal proximity of the data partitioning results. This method provides a new solution for distributed storage of mas-sive spatio-temporal data. The experimental results on multiple real-world da-tasets demonstrate the effectiveness and superiority of IFL-LSTP.

Submitted: Jun 22, 2023