Paper ID: 2306.13674

MeciFace: Mechanomyography and Inertial Fusion-based Glasses for Edge Real-Time Recognition of Facial and Eating Activities

Hymalai Bello, Sungho Suh, Bo Zhou, Paul Lukowicz

The increasing prevalence of stress-related eating behaviors and their impact on overall health highlights the importance of effective and ubiquitous monitoring systems. In this paper, we present MeciFace, an innovative wearable technology designed to monitor facial expressions and eating activities in real-time on-the-edge (RTE). MeciFace aims to provide a low-power, privacy-conscious, and highly accurate tool for promoting healthy eating behaviors and stress management. We employ lightweight convolutional neural networks as backbone models for facial expression and eating monitoring scenarios. The MeciFace system ensures efficient data processing with a tiny memory footprint, ranging from 11KB to 19 KB. During RTE evaluation, the system achieves an F1-score of < 86% for facial expression recognition and 94% for eating/drinking monitoring, for the RTE of unseen users (user-independent case).

Submitted: Jun 19, 2023