Paper ID: 2306.15231

Emulating Reader Behaviors for Fake News Detection

Junwei Yin, Min Gao, Kai Shu, Zehua Zhao, Yinqiu Huang, Jia Wang

The wide dissemination of fake news has affected our lives in many aspects, making fake news detection important and attracting increasing attention. Existing approaches make substantial contributions in this field by modeling news from a single-modal or multi-modal perspective. However, these modal-based methods can result in sub-optimal outcomes as they ignore reader behaviors in news consumption and authenticity verification. For instance, they haven't taken into consideration the component-by-component reading process: from the headline, images, comments, to the body, which is essential for modeling news with more granularity. To this end, we propose an approach of Emulating the behaviors of readers (Ember) for fake news detection on social media, incorporating readers' reading and verificating process to model news from the component perspective thoroughly. Specifically, we first construct intra-component feature extractors to emulate the behaviors of semantic analyzing on each component. Then, we design a module that comprises inter-component feature extractors and a sequence-based aggregator. This module mimics the process of verifying the correlation between components and the overall reading and verification sequence. Thus, Ember can handle the news with various components by emulating corresponding sequences. We conduct extensive experiments on nine real-world datasets, and the results demonstrate the superiority of Ember.

Submitted: Jun 27, 2023