Paper ID: 2306.16088

Mastering Nordschleife -- A comprehensive race simulation for AI strategy decision-making in motorsports

Max Boettinger, David Klotz

In the realm of circuit motorsports, race strategy plays a pivotal role in determining race outcomes. This strategy focuses on the timing of pit stops, which are necessary due to fuel consumption and tire performance degradation. The objective of race strategy is to balance the advantages of pit stops, such as tire replacement and refueling, with the time loss incurred in the pit lane. Current race simulations, used to estimate the best possible race strategy, vary in granularity, modeling of probabilistic events, and require manual input for in-laps. This paper addresses these limitations by developing a novel simulation model tailored to GT racing and leveraging artificial intelligence to automate strategic decisions. By integrating the simulation with OpenAI's Gym framework, a reinforcement learning environment is created and an agent is trained. The study evaluates various hyperparameter configurations, observation spaces, and reward functions, drawing upon historical timing data from the 2020 N\"urburgring Langstrecken Serie for empirical parameter validation. The results demonstrate the potential of reinforcement learning for improving race strategy decision-making, as the trained agent makes sensible decisions regarding pit stop timing and refueling amounts. Key parameters, such as learning rate, decay rate and the number of episodes, are identified as crucial factors, while the combination of fuel mass and current race position proves most effective for policy development. The paper contributes to the broader application of reinforcement learning in race simulations and unlocks the potential for race strategy optimization beyond FIA Formula~1, specifically in the GT racing domain.

Submitted: Jun 28, 2023