Paper ID: 2306.16950

Alternative Telescopic Displacement: An Efficient Multimodal Alignment Method

Jiahao Qin, Yitao Xu, Zong Lu, Xiaojun Zhang

In the realm of multimodal data integration, feature alignment plays a pivotal role. This paper introduces an innovative approach to feature alignment that revolutionizes the fusion of multimodal information. Our method employs a novel iterative process of telescopic displacement and expansion of feature representations across different modalities, culminating in a coherent unified representation within a shared feature space. This sophisticated technique demonstrates a remarkable ability to capture and leverage complex crossmodal interactions at the highest levels of abstraction. As a result, we observe significant enhancements in the performance of multimodal learning tasks. Through rigorous comparative analysis, we establish the superiority of our approach over existing multimodal fusion paradigms across a diverse array of applications. Comprehensive empirical evaluations conducted on multifaceted datasets encompassing temporal sequences, visual data, and textual information provide compelling evidence that our method achieves unprecedented benchmarks in the field. This work not only advances the state of the art in multimodal learning but also opens new avenues for exploring the synergies between disparate data modalities in complex analytical scenarios.

Submitted: Jun 29, 2023