Paper ID: 2306.17184

Why can neural language models solve next-word prediction? A mathematical perspective

Vinoth Nandakumar, Peng Mi, Tongliang Liu

Recently, deep learning has revolutionized the field of natural language processing, with neural language models proving to be very effective for next-word prediction. However, a rigorous theoretical explanation for their success in the context of formal language theory has not yet been developed, as it is unclear why neural language models can learn the combinatorial rules that govern the next-word prediction task. In this paper, we study a class of formal languages that can be used to model real-world examples of English sentences. We construct neural language models can solve the next-word prediction task in this context with zero error. Our proof highlights the different roles of the embedding layer and the fully connected component within the neural language model.

Submitted: Jun 20, 2023