Paper ID: 2306.17799

A Low-rank Matching Attention based Cross-modal Feature Fusion Method for Conversational Emotion Recognition

Yuntao Shou, Xiangyong Cao, Deyu Meng, Bo Dong, Qinghua Zheng

Conversational emotion recognition (CER) is an important research topic in human-computer interactions. Although deep learning (DL) based CER approaches have achieved excellent performance, existing cross-modal feature fusion methods used in these DL-based approaches either ignore the intra-modal and inter-modal emotional interaction or have high computational complexity. To address these issues, this paper develops a novel cross-modal feature fusion method for the CER task, i.e., the low-rank matching attention method (LMAM). By setting a matching weight and calculating attention scores between modal features row by row, LMAM contains fewer parameters than the self-attention method. We further utilize the low-rank decomposition method on the weight to make the parameter number of LMAM less than one-third of the self-attention. Therefore, LMAM can potentially alleviate the over-fitting issue caused by a large number of parameters. Additionally, by computing and fusing the similarity of intra-modal and inter-modal features, LMAM can also fully exploit the intra-modal contextual information within each modality and the complementary semantic information across modalities (i.e., text, video and audio) simultaneously. Experimental results on some benchmark datasets show that LMAM can be embedded into any existing state-of-the-art DL-based CER methods and help boost their performance in a plug-and-play manner. Also, experimental results verify the superiority of LMAM compared with other popular cross-modal fusion methods. Moreover, LMAM is a general cross-modal fusion method and can thus be applied to other multi-modal recognition tasks, e.g., session recommendation and humour detection.

Submitted: Jun 16, 2023