Paper ID: 2307.00020
CASEIN: Cascading Explicit and Implicit Control for Fine-grained Emotion Intensity Regulation
Yuhao Cui, Xiongwei Wang, Zhongzhou Zhao, Wei Zhou, Haiqing Chen
Existing fine-grained intensity regulation methods rely on explicit control through predicted emotion probabilities. However, these high-level semantic probabilities are often inaccurate and unsmooth at the phoneme level, leading to bias in learning. Especially when we attempt to mix multiple emotion intensities for specific phonemes, resulting in markedly reduced controllability and naturalness of the synthesis. To address this issue, we propose the CAScaded Explicit and Implicit coNtrol framework (CASEIN), which leverages accurate disentanglement of emotion manifolds from the reference speech to learn the implicit representation at a lower semantic level. This representation bridges the semantical gap between explicit probabilities and the synthesis model, reducing bias in learning. In experiments, our CASEIN surpasses existing methods in both controllability and naturalness. Notably, we are the first to achieve fine-grained control over the mixed intensity of multiple emotions.
Submitted: Jun 27, 2023