Paper ID: 2307.00037

MARF: The Medial Atom Ray Field Object Representation

Peder Bergebakken Sundt, Theoharis Theoharis

We propose Medial Atom Ray Fields (MARFs), a novel neural object representation that enables accurate differentiable surface rendering with a single network evaluation per camera ray. Existing neural ray fields struggle with multi-view consistency and representing surface discontinuities. MARFs address both using a medial shape representation, a dual representation of solid geometry that yields cheap geometrically grounded surface normals, in turn enabling computing analytical curvature despite the network having no second derivative. MARFs map a camera ray to multiple medial intersection candidates, subject to ray-sphere intersection testing. We illustrate how the learned medial shape quantities applies to sub-surface scattering, part segmentation, and aid representing a space of articulated shapes. Able to learn a space of shape priors, MARFs may prove useful for tasks like shape retrieval and shape completion, among others. Code and data can be found at https://github.com/pbsds/MARF.

Submitted: Jun 30, 2023