Paper ID: 2307.01050
Transport meets Variational Inference: Controlled Monte Carlo Diffusions
Francisco Vargas, Shreyas Padhy, Denis Blessing, Nikolas Nüsken
Connecting optimal transport and variational inference, we present a principled and systematic framework for sampling and generative modelling centred around divergences on path space. Our work culminates in the development of the \emph{Controlled Monte Carlo Diffusion} sampler (CMCD) for Bayesian computation, a score-based annealing technique that crucially adapts both forward and backward dynamics in a diffusion model. On the way, we clarify the relationship between the EM-algorithm and iterative proportional fitting (IPF) for Schr{\"o}dinger bridges, deriving as well a regularised objective that bypasses the iterative bottleneck of standard IPF-updates. Finally, we show that CMCD has a strong foundation in the Jarzinsky and Crooks identities from statistical physics, and that it convincingly outperforms competing approaches across a wide array of experiments.
Submitted: Jul 3, 2023