Paper ID: 2307.01488

SCAT: Robust Self-supervised Contrastive Learning via Adversarial Training for Text Classification

Junjie Wu, Dit-Yan Yeung

Despite their promising performance across various natural language processing (NLP) tasks, current NLP systems are vulnerable to textual adversarial attacks. To defend against these attacks, most existing methods apply adversarial training by incorporating adversarial examples. However, these methods have to rely on ground-truth labels to generate adversarial examples, rendering it impractical for large-scale model pre-training which is commonly used nowadays for NLP and many other tasks. In this paper, we propose a novel learning framework called SCAT (Self-supervised Contrastive Learning via Adversarial Training), which can learn robust representations without requiring labeled data. Specifically, SCAT modifies random augmentations of the data in a fully labelfree manner to generate adversarial examples. Adversarial training is achieved by minimizing the contrastive loss between the augmentations and their adversarial counterparts. We evaluate SCAT on two text classification datasets using two state-of-the-art attack schemes proposed recently. Our results show that SCAT can not only train robust language models from scratch, but it can also significantly improve the robustness of existing pre-trained language models. Moreover, to demonstrate its flexibility, we show that SCAT can also be combined with supervised adversarial training to further enhance model robustness.

Submitted: Jul 4, 2023