Paper ID: 2307.03679

Undecimated Wavelet Transform for Word Embedded Semantic Marginal Autoencoder in Security improvement and Denoising different Languages

Shreyanth S

By combining the undecimated wavelet transform within a Word Embedded Semantic Marginal Autoencoder (WESMA), this research study provides a novel strategy for improving security measures and denoising multiple languages. The incorporation of these strategies is intended to address the issues of robustness, privacy, and multilingualism in data processing applications. The undecimated wavelet transform is used as a feature extraction tool to identify prominent language patterns and structural qualities in the input data. The proposed system may successfully capture significant information while preserving the temporal and geographical links within the data by employing this transform. This improves security measures by increasing the system's ability to detect abnormalities, discover hidden patterns, and distinguish between legitimate content and dangerous threats. The Word Embedded Semantic Marginal Autoencoder also functions as an intelligent framework for dimensionality and noise reduction. The autoencoder effectively learns the underlying semantics of the data and reduces noise components by exploiting word embeddings and semantic context. As a result, data quality and accuracy are increased in following processing stages. The suggested methodology is tested using a diversified dataset that includes several languages and security scenarios. The experimental results show that the proposed approach is effective in attaining security enhancement and denoising capabilities across multiple languages. The system is strong in dealing with linguistic variances, producing consistent outcomes regardless of the language used. Furthermore, incorporating the undecimated wavelet transform considerably improves the system's ability to efficiently address complex security concerns

Submitted: Jul 6, 2023