Paper ID: 2307.04205

Extending the Forward Forward Algorithm

Saumya Gandhi, Ritu Gala, Jonah Kornberg, Advaith Sridhar

The Forward Forward algorithm, proposed by Geoffrey Hinton in November 2022, is a novel method for training neural networks as an alternative to backpropagation. In this project, we replicate Hinton's experiments on the MNIST dataset, and subsequently extend the scope of the method with two significant contributions. First, we establish a baseline performance for the Forward Forward network on the IMDb movie reviews dataset. As far as we know, our results on this sentiment analysis task marks the first instance of the algorithm's extension beyond computer vision. Second, we introduce a novel pyramidal optimization strategy for the loss threshold - a hyperparameter specific to the Forward Forward method. Our pyramidal approach shows that a good thresholding strategy causes a difference of up to 8% in test error. Lastly, we perform visualizations of the trained parameters and derived several significant insights, such as a notably larger (10-20x) mean and variance in the weights acquired by the Forward Forward network. Repository: https://github.com/Ads-cmu/ForwardForward

Submitted: Jul 9, 2023