Paper ID: 2307.05779
Neural Machine Translation Data Generation and Augmentation using ChatGPT
Wayne Yang, Garrett Nicolai
Neural models have revolutionized the field of machine translation, but creating parallel corpora is expensive and time-consuming. We investigate an alternative to manual parallel corpora - hallucinated parallel corpora created by generative language models. Although these models are themselves trained on parallel data, they can leverage a multilingual vector space to create data, and may be able to supplement small manually-procured corpora. Our experiments highlight two key findings - despite a lack of diversity in their output, the hallucinated data improves the translation signal, even when the domain clashes with the original dataset.
Submitted: Jul 11, 2023