Paper ID: 2307.06978
A decision framework for selecting information-transfer strategies in population-based SHM
Aidan J. Hughes, Jack Poole, Nikolaos Dervilis, Paul Gardner, Keith Worden
Decision-support for the operation and maintenance of structures provides significant motivation for the development and implementation of structural health monitoring (SHM) systems. Unfortunately, the limited availability of labelled training data hinders the development of the statistical models on which these decision-support systems rely. Population-based SHM seeks to mitigate the impact of data scarcity by using transfer learning techniques to share information between individual structures within a population. The current paper proposes a decision framework for selecting transfer strategies based upon a novel concept -- the expected value of information transfer -- such that negative transfer is avoided. By avoiding negative transfer, and by optimising information transfer strategies using the transfer-decision framework, one can reduce the costs associated with operating and maintaining structures, and improve safety.
Submitted: Jul 13, 2023