Paper ID: 2307.07963
Enhancing Energy Efficiency and Reliability in Autonomous Systems Estimation using Neuromorphic Approach
Reza Ahmadvand, Sarah Safura Sharif, Yaser Mike Banad
Energy efficiency and reliability have long been crucial factors for ensuring cost-effective and safe missions in autonomous systems computers. With the rapid evolution of industries such as space robotics and advanced air mobility, the demand for these low size, weight, and power (SWaP) computers has grown significantly. This study focuses on introducing an estimation framework based on spike coding theories and spiking neural networks (SNN), leveraging the efficiency and scalability of neuromorphic computers. Therefore, we propose an SNN-based Kalman filter (KF), a fundamental and widely adopted optimal strategy for well-defined linear systems. Furthermore, based on the modified sliding innovation filter (MSIF) we present a robust strategy called SNN-MSIF. Notably, the weight matrices of the networks are designed according to the system model, eliminating the need for learning. To evaluate the effectiveness of the proposed strategies, we compare them to their algorithmic counterparts, namely the KF and the MSIF, using Monte Carlo simulations. Additionally, we assess the robustness of SNN-MSIF by comparing it to SNN-KF in the presence of modeling uncertainties and neuron loss. Our results demonstrate the applicability of the proposed methods and highlight the superior performance of SNN-MSIF in terms of accuracy and robustness. Furthermore, the spiking pattern observed from the networks serves as evidence of the energy efficiency achieved by the proposed methods, as they exhibited an impressive reduction of approximately 97 percent in emitted spikes compared to possible spikes.
Submitted: Jul 16, 2023