Paper ID: 2307.09076
Implementation and Evaluation of Networked Model Predictive Control System on Universal Robot
Mahsa Noroozi, Kai Wang
Networked control systems are closed-loop feedback control systems containing system components that may be distributed geographically in different locations and interconnected via a communication network such as the Internet. The quality of network communication is a crucial factor that significantly affects the performance of remote control. This is due to the fact that network uncertainties can occur in the transmission of packets in the forward and backward channels of the system. The two most significant among these uncertainties are network time delay and packet loss. To overcome these challenges, the networked predictive control system has been proposed to provide improved performance and robustness using predictive controllers and compensation strategies. In particular, the model predictive control method is well-suited as an advanced approach compared to conventional methods. In this paper, a networked model predictive control system consisting of a model predictive control method and compensation strategies is implemented to control and stabilize a robot arm as a physical system. In particular, this work aims to analyze the performance of the system under the influence of network time delay and packet loss. Using appropriate performance and robustness metrics, an in-depth investigation of the impacts of these network uncertainties is performed. Furthermore, the forward and backward channels of the network are examined in detail in this study.
Submitted: Jul 18, 2023