Paper ID: 2307.11694
SynerGPT: In-Context Learning for Personalized Drug Synergy Prediction and Drug Design
Carl Edwards, Aakanksha Naik, Tushar Khot, Martin Burke, Heng Ji, Tom Hope
Predicting synergistic drug combinations can help accelerate discovery of cancer treatments, particularly therapies personalized to a patient's specific tumor via biopsied cells. In this paper, we propose a novel setting and models for in-context drug synergy learning. We are given a small "personalized dataset" of 10-20 drug synergy relationships in the context of specific cancer cell targets. Our goal is to predict additional drug synergy relationships in that context. Inspired by recent work that pre-trains a GPT language model (LM) to "in-context learn" common function classes, we devise novel pre-training schemes that enable a GPT model to in-context learn "drug synergy functions". Our model -- which does not use any textual corpora, molecular fingerprints, protein interaction or any other domain-specific knowledge -- is able to achieve competitive results. We further integrate our in-context approach with a genetic algorithm to optimize model prompts and select synergy candidates to test after conducting a patient biopsy. Finally, we explore a novel task of inverse drug design which can potentially enable the design of drugs that synergize specifically to target a given patient's "personalized dataset". Our findings can potentially have an important impact on precision cancer medicine, and also raise intriguing questions on non-textual pre-training for LMs.
Submitted: Jun 19, 2023