Paper ID: 2307.11749
Differentially Private Heavy Hitter Detection using Federated Analytics
Karan Chadha, Junye Chen, John Duchi, Vitaly Feldman, Hanieh Hashemi, Omid Javidbakht, Audra McMillan, Kunal Talwar
In this work, we study practical heuristics to improve the performance of prefix-tree based algorithms for differentially private heavy hitter detection. Our model assumes each user has multiple data points and the goal is to learn as many of the most frequent data points as possible across all users' data with aggregate and local differential privacy. We propose an adaptive hyperparameter tuning algorithm that improves the performance of the algorithm while satisfying computational, communication and privacy constraints. We explore the impact of different data-selection schemes as well as the impact of introducing deny lists during multiple runs of the algorithm. We test these improvements using extensive experimentation on the Reddit dataset~\cite{caldas2018leaf} on the task of learning the most frequent words.
Submitted: Jul 21, 2023