Paper ID: 2307.11989
Morphology-inspired Unsupervised Gland Segmentation via Selective Semantic Grouping
Qixiang Zhang, Yi Li, Cheng Xue, Xiaomeng Li
Designing deep learning algorithms for gland segmentation is crucial for automatic cancer diagnosis and prognosis, yet the expensive annotation cost hinders the development and application of this technology. In this paper, we make a first attempt to explore a deep learning method for unsupervised gland segmentation, where no manual annotations are required. Existing unsupervised semantic segmentation methods encounter a huge challenge on gland images: They either over-segment a gland into many fractions or under-segment the gland regions by confusing many of them with the background. To overcome this challenge, our key insight is to introduce an empirical cue about gland morphology as extra knowledge to guide the segmentation process. To this end, we propose a novel Morphology-inspired method via Selective Semantic Grouping. We first leverage the empirical cue to selectively mine out proposals for gland sub-regions with variant appearances. Then, a Morphology-aware Semantic Grouping module is employed to summarize the overall information about the gland by explicitly grouping the semantics of its sub-region proposals. In this way, the final segmentation network could learn comprehensive knowledge about glands and produce well-delineated, complete predictions. We conduct experiments on GlaS dataset and CRAG dataset. Our method exceeds the second-best counterpart over 10.56% at mIOU.
Submitted: Jul 22, 2023