Paper ID: 2307.13606
Object-based Probabilistic Similarity Evidence of Sparse Latent Features from Fully Convolutional Networks
Cyril Juliani
Similarity analysis using neural networks has emerged as a powerful technique for understanding and categorizing complex patterns in various domains. By leveraging the latent representations learned by neural networks, data objects such as images can be compared effectively. This research explores the utilization of latent information generated by fully convolutional networks (FCNs) in similarity analysis, notably to estimate the visual resemblance of objects segmented in 2D pictures. To do this, the analytical scheme comprises two steps: (1) extracting and transforming feature patterns per 2D object from a trained FCN, and (2) identifying the most similar patterns through fuzzy inference. The step (2) can be further enhanced by incorporating a weighting scheme that considers the significance of latent variables in the analysis. The results provide valuable insights into the benefits and challenges of employing neural network-based similarity analysis for discerning data patterns effectively.
Submitted: Jul 25, 2023