Paper ID: 2307.15090
Understanding Forward Process of Convolutional Neural Network
Peixin Tian
This paper reveal the selective rotation in the CNNs' forward processing. It elucidates the activation function as a discerning mechanism that unifies and quantizes the rotational aspects of the input data. Experiments show how this defined methodology reflects the progress network distinguish inputs based on statistical indicators, which can be comprehended or analyzed by applying structured mathematical tools. Our findings also unveil the consistency between artificial neural networks and the human brain in their data processing pattern.
Submitted: Jul 27, 2023