Paper ID: 2307.16213

Toward a Period-Specific Optimized Neural Network for OCR Error Correction of Historical Hebrew Texts

Omri Suissa, Maayan Zhitomirsky-Geffet, Avshalom Elmalech

Over the past few decades, large archives of paper-based historical documents, such as books and newspapers, have been digitized using the Optical Character Recognition (OCR) technology. Unfortunately, this broadly used technology is error-prone, especially when an OCRed document was written hundreds of years ago. Neural networks have shown great success in solving various text processing tasks, including OCR post-correction. The main disadvantage of using neural networks for historical corpora is the lack of sufficiently large training datasets they require to learn from, especially for morphologically-rich languages like Hebrew. Moreover, it is not clear what are the optimal structure and values of hyperparameters (predefined parameters) of neural networks for OCR error correction in Hebrew due to its unique features. Furthermore, languages change across genres and periods. These changes may affect the accuracy of OCR post-correction neural network models. To overcome these challenges, we developed a new multi-phase method for generating artificial training datasets with OCR errors and hyperparameters optimization for building an effective neural network for OCR post-correction in Hebrew.

Submitted: Jul 30, 2023