Paper ID: 2307.16351
Distributionally Robust Safety Filter for Learning-Based Control in Active Distribution Systems
Hoang Tien Nguyen, Dae-Hyun Choi
Operational constraint violations may occur when deep reinforcement learning (DRL) agents interact with real-world active distribution systems to learn their optimal policies during training. This letter presents a universal distributionally robust safety filter (DRSF) using which any DRL agent can reduce the constraint violations of distribution systems significantly during training while maintaining near-optimal solutions. The DRSF is formulated as a distributionally robust optimization problem with chance constraints of operational limits. This problem aims to compute near-optimal actions that are minimally modified from the optimal actions of DRL-based Volt/VAr control by leveraging the distribution system model, thereby providing constraint satisfaction guarantee with a probability level under the model uncertainty. The performance of the proposed DRSF is verified using the IEEE 33-bus and 123-bus systems.
Submitted: Jul 31, 2023